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Abstract— We propose a new approach to control the shape
of deformable objects with robots. Specifically, we consider a
fixed-length elastic linear object lying on a 2D workspace. Our
main idea is to encode the object’s deformation behavior in an
offline constant Jacobian matrix. To derive this Jacobian, we
use geometric deformation modeling and combine recent work
from the fields of deformable object control and multirobot
systems. Based on this Jacobian, we then propose a robotic
control law that is capable of driving a set of shape features on
the object toward prescribed values. Our contribution relative
to existing approaches is that at run-time we do not need to
measure the full shape of the object or to estimate/simulate
a deformation model. This simplification is achieved thanks
to having abstracted the deformation behavior as an offline
model. We illustrate the proposed approach in simulation and
in experiments with real deformable linear objects.

I. INTRODUCTION

The manipulation of deformable –as opposed to rigid–
objects with robots is considered instrumental for extending
the capabilities of current systems. For this reason, this
field has acquired great relevance recently [1]. A particular
subdomain that has attracted considerable attention in the
past few years is the manipulation of deformable linear
objects (DLOs) such as cables, wires, flexible rods, plant
stems, etc. [2]–[7]. This recent interest is due to the important
associated applications in, e.g., industry or agriculture.

In the state of the art, successful methods have been
proposed to manipulate DLOs based on a pre-existing de-
formation model [6]–[8] or on a model-free sensor-based
adaptive scheme [2]–[5]. An alternative approach based on
a diminishing rigidity assumption has also been proposed
[9]. At run-time, the cited methods that perform closed-
loop control require sensing the full shape of the object
(in order to simulate the deformation model), or running
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adaptive schemes to estimate the deformation behavior. In
this paper, we propose a simpler approach that does not
have these requirements. The approach works by computing
offline a model (a deformation Jacobian) based on geometric
modeling and assuming an elastic behavior. At run-time, our
method needs to sense the values of the servoed features
only, and not the full shape. To develop our model, we build
on recent techniques for deformable object manipulation [7]
and multirobot systems control [10]. Our model is geometric
and thus we also follow along the lines of recent work [11],
[12] which proposed the robotic control of the shape of
deformable objects using geometric deformation modeling
techniques [13], [14]. Differently from our paper, these works
[11], [12] required sensing the full shape of the object and
simulating the deformation model at run-time.

Addressing DLO manipulation problems via the use of
machine learning has gained popularity recently. A deep-
neural-network-based dynamics model was proposed in [15]
to predict the next shape of the object. In [16], a multi-layer
neural network encoded the mapping between end-effector
motions and object deformations. [17] proposed a scheme
for DLO deformation control relying on both offline and
online learning. The work [18] addressed DLO manipulation
via the use of reinforcement learning and accommodated
elastoplastic behaviors. Compared to these methods, our
approach is simpler and does not need any training.

The contributions of this paper are:
• A novel method for 2D control of the shape of elastic linear
objects based on an offline geometric model which, at run-
time, does not require estimating/simulating the deformation
behavior or sensing the full shape of the object.
• A novel link between prior work in two different domains:
deformable object modeling and multirobot systems control.
This link is a promising starting point for potential future
developments in the same direction.
• Successful validation of the applicability of the method, in
simulation and via robotic experiments with diverse objects.

The envisioned applications of the proposed approach
are diverse, including for instance plant pruning tasks in
agriculture, or assembly operations in industrial contexts.

II. PROBLEM FORMULATION

The problem we address is the control of the shape of
a linear elastic object by means of robotic manipulation.
This problem has been given the name shape servoing in
the literature [4], [12], [19]. Specifically, we consider the
following conditions and assumptions:
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• The object is a DLO and lies in a 2D workspace. It
has fixed length and it deforms elastically (not plastically).
The shape of the object at rest is known. The object’s
shape always remains stable (i.e., in quasi-static equilibrium)
during its manipulation.
• One or multiple robots (i.e., grippers) grasp the object. The
velocity of each gripper can be set by a robotic controller.
Each gripper constrains a specific gripped region on the ob-
ject. There may also be anchored regions on the object, i.e.,
whose position is constant due to external constraints (e.g., a
grounded region). The gripped and anchored regions of the
object are known before starting the task, and they remain
fixed throughout the execution. The grasping configuration
used is suitable for completing the task described next.
• The addressed task consists in controlling a set of features
that encode information about the object’s shape (e.g., the
2D positions of certain parts of the object). Each feature has
a desired value, which is fixed and prescribed before starting
the task. The current values of the features can be continually
sensed at run-time (e.g., with vision). Our objective is to find
a closed-loop control law for the velocity of every gripper
so that every feature is driven to its desired value.

Fig. 1 shows the block diagram of the method we propose
to carry out this task. We describe the method next.

Fig. 1. Schematic diagram of the proposed method.

III. PROPOSED DLO MODELING AND SHAPE CONTROL

We represent the DLO discretely with a set of n nodes,
indexed 1, ..., n. The nodes are sampled uniformly and
consecutively along the object’s length. The object’s rest
shape, c, is the stacking of the positions at rest of all nodes:
c = [c⊤1 , c⊤2 , ..., c⊤n ]

⊤ ∈ R2n. We group the nodes in
sets of three. We call each of these sets a triad. The full
linear object has m chained triads, Tk = {k, k + 1, k + 2}
(where the indexes are taken mod n) for k = 1, ...,m.
We consider that the object’s rest shape is open; e.g., a
rod with two ends. Therefore, m = n − 2. We denote the
current shape of the object (i.e., the current node positions)
as q = [q⊤

1 , q⊤
2 , ..., q⊤

n ]
⊤ ∈ R2n.

Our approach is based on an As-Similar-As-Possible
(ASAP) modeling. ASAP is a way to model deformations
that has been used in the computer graphics domain for
visualization applications [20]–[22]. It is closely related to,
and sometimes used in conjunction with, the popular model
ARAP (As-Rigid-As-Possible) [12], [13], [20], [23]. ASAP

is based on the intuitive idea that every local region of
the modeled object has a tendency to preserve its original
shape up to translation, rotation and scaling: i.e., a similarity
transformation of the original shape, hence the name of
the method. In concrete terms, ASAP is formulated as a
deformation energy, and the quasi-static configurations of the
object’s shape are local minima of that energy.

There are different formulations of ASAP/ARAP; all are
based on the same underlying concepts, but they use, e.g.,
different definitions of the local regions. In particular, an
ASAP energy in 2D was proposed in [10], in a context
not related with deformable objects: specifically, the pro-
posed energy was used as the cost function in a distributed
controller of a multirobot formation. In [10], the elements
forming the triads were robots, whereas they are the points
on the object’s body in our case. As we show next, the
formulation of [10] is compact and adapts perfectly to our
needs, which motivates our use of it. The energy proposed
in [10] is a sum of energies over every triad, as follows:

Ea =

m∑
k=1

Ek, Ek =
1

2

∑
i∈Tk

||(qi − q0k)−Hk(ci − c0k)||2.

(1)
q0k and c0k are the centroids of the current and rest positions
of the three nodes in Tk. Hk ∈ R2×2 is the least-squares sim-
ilarity (rotation and uniform scaling) transformation between
these two sets of positions. Ea can be expressed compactly:

Ea = −1

2
q⊤Aq, (2)

where A is a constant matrix that encapsulates the defor-
mation (in the ASAP sense) of the object. A is a sparse
symmetric matrix based on the triad structure and on the
shape at rest, c. Note that this compact 2D formulation
cannot be directly extended to 3D, where non-linearities
appear (see, e.g., [24]). An expression of A was given for
general triad structures and general shapes at rest in [10].
Next, starting from that expression, we give the particular
form of the matrix in the case of our DLO model.

We define S = [(0, 1)⊤, (−1, 0)⊤], i.e., a counterclock-
wise rotation of π/2 rad, and T = In⊗S, where In denotes
the n×n identity matrix and ⊗ the Kronecker product. Then,
A,Ak,Lk ∈ R2n×2n, Lgk ∈ Rn×n are as follows:

A =

m∑
k=1

Ak, Ak =
Lk(cc

⊤ +Tcc⊤T⊤)Lk

c⊤Lkc
− Lk, (3)

Lk = Lgk ⊗ I2, Lgk[i, j] =


2/3, if i = j & i ∈ Tk
−1/3, if i ̸= j & i, j ∈ Tk
0 otherwise.

ASAP (and ARAP) are models that represent physical
behavior at the geometric level, rather than at the mechanical
one. Still, these models assume the object behavior is quasi-
static, and they are based on formulating a deformation
energy. In these aspects they are analogous to elastic FEM
models [7], [25]. Therefore, it is possible to compute equiva-
lent mechanical magnitudes (e.g., forces) in ASAP or ARAP.



We will therefore use an analysis similar to [7], [25] to derive
a control law from ASAP.

The first step is to know the forces at the nodes due to
the ASAP energy. By definition these forces are equal to the
negated gradient of the energy. Therefore, noting that A is
symmetric, the nodal forces fa ∈ R2n are:

fa = −∂Ea

∂q
= Aq. (4)

It is interesting to note that this is a linear expression in q.
We compute its time derivative:

Aq̇ = ḟa. (5)

From (5), we will next derive a control law following a
similar strategy to the one used in [7] with a FEM model.
We first define a partition of the nodes. Concretely, we divide
the set of nodes into ng gripped nodes, ns servoed nodes,
and nf free nodes, such that ng + ns + nf = n. Note that
the set of gripped nodes includes all regions of the object
whose position is constrained externally: i.e., the grasped
regions, and also the anchored regions. The positions of the
nodes are denoted, respectively, by qg ∈ R2ng , qs ∈ R2ns ,
qf ∈ R2nf . Matrix A and the vector of forces fa are also
partitioned accordingly, and hence (5) takes the form:Agg Ags Agf

Asg Ass Asf

Afg Afs Aff

q̇g

q̇s

q̇f

 =

ḟag
ḟas
ḟaf

 . (6)

As the object is always in quasi-static equilibrium, all
resultant forces (i.e., sum of ASAP force and external force)
on all nodes are always zero. Hence, their time-derivative
is zero too. Therefore, using subscript ex to denote external
forces, we have:

ḟag+ ḟexg = 0 , ḟas+ ḟexs = 0 , ḟaf+ ḟexf = 0. (7)

The gripped nodes are subjected to the external forces that
cause the object to deform, which are in general time-varying
forces. Therefore, ḟexg are not zero, and consequently ḟag is
not zero. On the other hand, the nodes that are not being
gripped (i.e., the servoed nodes and free nodes) are subjected
to constant external forces. Typically these constant external
forces are zero, or equal to the gravity force. This means
that ḟexs = 0 and ḟexf = 0. Hence, from (7), ḟas = 0 and
ḟaf = 0. Using these latter two conditions in (6), we get:(

Asg Ass Asf

Afg Afs Aff

)q̇g

q̇s

q̇f

 = 0. (8)

From (8), we can obtain the key expression in our de-
velopment: the relation between gripped and servoed node
motions. This expression is as follows:

q̇s = Jsgq̇g, (9)

with Jsg=−(Ass −AsfA
−1
ff Afs)

−1(Asg−AsfA
−1
ff Afg).

Similarly to [7], [17], [20], we assume the matrices that have
to be inverted are full-rank. This comes from the fact that
the shape is completely constrained by the gripped nodes.

A. Control law

Assuming the desired positions for the servoed nodes are
qsd ∈ R2ns , we define the servoing error as:

es = qs − qsd. (10)

Now, from (9) and (10), we can propose the following
proportional control law:

vg = −kgJ
+
sges, (11)

where kg is a positive gain, + denotes the pseudoinverse,
and vg is the velocity of the gripped nodes: vg = q̇g .

Frequently, the gripper used in real applications can con-
strain not only the position of the gripped point of the
linear object, but also the orientation (i.e., the line tangent
to the object’s curve) at that point. Interestingly, this can be
introduced in a straightforward way in our model, as follows.
For simplicity, assume a gripper h grips two (adjacent) nodes.
Calling the positions of these nodes g1 = [g1x, g1y]

⊤ and
g2 = [g2x, g2y]

⊤, the 3-DOF configuration of the gripper in
the global frame is [xg, yg, βg]

⊤ = [(g1x + g2x)/2, (g1y +
g2y)/2, atan2(g2y−g1y, g2x−g1x)]

⊤. Denoting the gripped
length (i.e., length of the line segment between g1 and g2) by
lg , a Jacobian matrix block that maps gripper h’s velocities
to the velocities of its gripped nodes is as follows:

Jgph =


1 0 (lg/2) sinβg

0 1 −(lg/2) cosβg

1 0 −(lg/2) sinβg

0 1 (lg/2) cosβg

 . (12)

Assuming there are ne such grippers, we assemble the
Jacobian blocks for all of them in a full Jacobian matrix
Jgp of size 4ne × 3ne. We also stack the gripper velocities
in a vector vp of length 3ne. Then we define the control law:

vp = −kpJ
+
spes, (13)

where Jsp = JsgJgp is the Jacobian relating servoed nodes
to grippers. One can use a gain kp > 0, or a gain matrix to
weight differently translation and rotation velocities.

B. Discussion

We make several remarks about the presented idea.
• For elastic linear objects, there are well-known instabilities
at certain configurations where the shape changes non-
smoothly [6]. Our formulation is only valid in the regions
of the object’s shape space where the changes are stable and
smooth, i.e., where a relation such as (9) can be defined.
• In [7], a matrix K that plays an analogous role to our A
is used. That K is the tangent stiffness matrix of the FEM
structure that represents the object, and it is a function of q.
This means one needs to estimate q (i.e., the full shape of the
object) at run-time to compute the control law, even if only
a few of the nodes are servoed and most are not. We avoid
this requirement since our matrix A is constant and can be
computed offline. This is important because measuring the
shape of deformable objects robustly is challenging.
• A and then Jsg can be computed from the rest shape of the
object (which is direct to know for a straight elastic rod) and



the knowledge of what nodes are gripped and what nodes are
to be servoed. At run-time, our control law (11) only needs
to compute es, which requires measuring the positions of the
servoed nodes only (not the shape of the full object).
• Even if our Jacobian is computed using the rest shape,
this does not mean that it is only valid at the rest shape. On
the contrary, it is the valid and exact Jacobian of the object,
under the ASAP modeling, at every shape that satisfies our
prior assumptions (stable deformation).
• Recent works performed successful shape control with
approximated deformation models (FEM with imprecise pa-
rameters [7], ARAP [12]). By using the measurement of the
object’s shape in a feedback loop, the control laws in these
works are convergent even if the deformation model is only
coarsely accurate. This justifies our use of ASAP.
• Our controller idea directly accommodates multiple robots
(grippers) without any change in the methodology. Just by
knowing which nodes are gripped by each gripper, one can
derive directly the control laws for all grippers.
• However, in order to use the described idea to control the
shape of real-world objects, there remains a major issue: in
general, ASAP is not a good model of the deformation of
real-world elastic objects. We solve this issue by identifying
specific conditions under which it becomes a good model,
as explained in the next section.

IV. ASAP AS AN ARAP APPROXIMATION

ASAP is not a good representation of the behavior of
elastic objects because it does not preserve their physical
size. In general, an object simulated using ASAP can easily
shrink or grow in size unrealistically [20], [21]. On the other
hand, ARAP is a good model of deformation behaviors of
elastic objects [13], [23]. ARAP tends to preserve rigidity
locally and by doing so, it keeps the size of the object under
control, unlike ASAP does. Indeed, ARAP has been used
recently for controlling the shape of 3D deformable objects
[12]. However, ARAP is a nonlinear model, and its Jacobian
depends on the current shape q. Avoiding this dependency
is precisely why we want to use ASAP.

Our triad-based formulation can be used both for ASAP
and ARAP. For both models, an essential element is the
computation of an optimal transformation for each triad.
In ASAP, this transformation is a similarity, as described
above: Hk, for triad k. In ARAP, the transformation is a
pure rotation: Rk, for triad k. These transformations satisfy:

Hk = skRk ∀k. (14)

Therefore, we can make the observation that if the condition
sk = 1 ∀k holds, ASAP and ARAP are equivalent. Moti-
vated by this observation, we next show that this condition
approximately holds in the scenario we consider.

A. Geometric analysis for a triad

Our geometric modeling of a generic triad, shown in Fig.
2, is motivated next. This modeling assumes the rest shape
of every triad is a straight line. Note that our modeling of
the object is discrete. Hence, the shape of the object between

Fig. 2. Geometric modeling. Left: four nodes in two triads Tk , Tk+1, with
their angles θk , θk+1. Center: a generic triad. Right: close-up of a region
of the center plot. Nodes are shown as circles, gradient vectors as arrows.

two adjacent nodes is represented as a straight line segment.
Recall that the object’s length (equal to the sum of the
segments’ lengths in our modeling) is fixed. Therefore all
segments always have equal and fixed lengths (l). The change
of curvature along the object is represented via the angle θ
relative to r, which is the line tangent to the object’s curve
according to our discrete modeling. Due to the symmetry of
the layout, the variables of the ASAP/ARAP models can be
obtained via direct trigonometric relations. We can obtain:

s = cos(θ). (15)

Our goal was to have values of s close to 1 (14): it is clear
from (15) that this will happen when θ is small. Therefore,
we want θ to be always small for all triads.

Notice that θ is small if the local curvature at every point
is small: this will typically be true if n is high enough to
sample the object densely, and there are no extreme local
deformations (i.e., very high bending at some point along
the rod). Observe that the global deformation of the object
can still be large even if the local curvature is small at every
one of its points, as shown in our experiments (Sect. V). We
used the gradients (which express the forces) of the ASAP
energy to derive our controller. To support the use of this
controller, next we study how well the ASAP gradients can
approximate the ARAP ones. In Fig. 2, the ASAP gradient
for the shown triad is denoted by gH , the ARAP gradient as
gR, and the approximation error as gE = gR − gH . Due to
the properties of least-squares alignment, the three endpoints
of the gradient vectors form the rest (straight) shape and their
centroid is the same as the nodes’ centroid. Moreover, the
vectors have certain symmetries due to the symmetry of the
layout (the nodes form an isosceles triangle). We can obtain:

α = arctan
||gE ||
||gH ||

= arctan
3(1− cos(θ))

sin(θ)
. (16)

As |θ| ≤ π/2 rad by definition, (16) implies that |α| < π/2
rad. This means that the inner product of the true gradient
vector (gR) and the one we use as its approximation (gH )
is always non-negative. In gradient-based algorithms, this
is usually a sufficient condition for obtaining the desired
performance (e.g., in gradient descent). Note that we do not
need to study the center node of the triad, because for that
node gH = gR, i.e., the approximation is exact.

Overall, this geometric analysis supports the appropriate-
ness of approximating elastic behavior with an ASAP model



Fig. 3. Simulation results. Six sequential xy plots are displayed, showing convergence to the two targets (third plots from the left on both rows). The
targets are represented by small red hollow circles, the controlled points (servoed nodes) by small solid green circles, and the robotic grippers by big black
hollow circles. Time plots show servoing error (||es||) and x, y gripper velocities (subscript l: left gripper, r: right gripper).

in our scenario. Note that this is only a partial analysis
restricted to one triad; for each point, its total gradient is
the sum of gradients over all the triads the point belongs to.

V. EXPERIMENTAL VALIDATION

We test the approach in simulation and in hardware
experiments with real objects, in different scenarios1.

A. Simulation

We use Matlab and model with ARAP an elastic rod of
length 1m and n = 60. We use two grippers, one at each
end-node. We do not consider any anchored regions. We
implement (11), i.e., we do not consider gripper rotation.
Two control stages are executed, each with a different set
of two servoed nodes and different desired values. As seen
in Fig. 3, the two grippers move the object to make the
servoed nodes reach their desired positions. The value of s
for all triads always stayed between 0.995 and 1, which is
consistent with our analysis in Sect. IV-A.

B. Robotic experiments with real objects

Fig. 4. The experimental setup used in this work.

The proposed method is implemented in a robotic ma-
nipulation system to study its performance, as shown in
Fig. 4. The experiments are performed with a UR10 arm.
Fifty points are used to discretize the object (i.e., n = 50).

1A video of our simulation and experimental results is attached and can
be found at: https://www.youtube.com/watch?v=LI8JdTFPlR8

Other values of n in a similar range (several tens) produce
similar results. The controlled points (servoed nodes) and
the gripped points are tracked with a fixed Logitech C270
camera, and ArUco markers have been used to obtain the
pose of these points using the C++ OpenCV library. To
validate the performance of the proposed method, various
experiments are performed to control one, two, and three
different points along the length of the objects. We use three
different deformable linear objects with various characteris-
tics to conduct the tests: a thin flexible rod made of plastic
with the length of 0.87 m, a deformable foam rod with the
length of 0.87 m, and a small deformable foam rod with the
length of 0.26 m. Note that by selecting an appropriate n, the
object’s length does not affect the controller’s performance.
The Jacobian matrix is obtained using the proposed method
offline, and then, the states of the gripped points are updated
using control law (13) at each instant. In the plots of this
section, the error of each controlled point is defined from
(10) as follows (ι indicates the controlled point number):

errorι =
√

(xs−ι − xsd−ι)2 + (ys−ι − ysd−ι)2, (17)

where [xs−ι, ys−ι]
⊤ is the current position of the controlled

point and [xsd−ι, ysd−ι]
⊤ is its desired position.

To investigate the controller’s performance, in the first
step, we try to control pose (position, and angle of the
line tangent to the object’s curve) of a single point along
the object’s length. To do that, the pose of the point is
obtained using the position of its two closest nodes. Several
experiments have been performed to validate the accuracy
of the proposed algorithm, and the results are shown in
Fig. 5 to Fig. 7. As one can see, by applying the controller
during the deformation process, the errors of the controlled
points converge to zero. In these experiments, we define
errorβ = βs−1 − βsd−1 where βs−1 and βsd−1 are the
current and target value of the angle of the point, respectively.

In the next step, we try to control position of two and three
non-adjacent points using the proposed method. It is evident



Fig. 5. Experiment 1. Pose control of one point. First row: initial and final
shapes. Target point shown as a red circle, target angle as a line segment.
Second row: errors plots. Third row: gripper velocities on different axes.

Fig. 6. Experiment 2. Pose control of one point. The initial and final shapes
can be found in the first row. The errors are plotted in the second row.

that the system becomes underactuated since the number
of actuated degrees of freedom is lower than the number
of degrees of freedom of the controlled points. Hence, the
system can only be stable in a local sense. The final shape of
the object and the errors of the controlled points concerning
their targets are presented in Fig. 8 to Fig. 10. As one can
see, the errors converge to zero, and the presented method
achieves its objective. The initial and target states of the
controlled points in all experiments are presented in Table I.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have investigated the problem of con-
trolling deformable linear objects. We have presented an
approach to control one or several arbitrary points along the
length of an object. The proposed approach allows deforming
elastic linear objects in a controlled way and needs only

Fig. 7. Experiment 3. Pose control of one point. The initial and final shapes
can be found in the first row. The errors are plotted in the second row.

Fig. 8. Experiment 4. Position control of two points. The initial and final
shapes of the object are indicated in the first row. The errors of the two
controlled points are plotted in the second row.

Fig. 9. Experiment 5. Position control of two points. The initial and final
shapes of the object are indicated in the first row. The errors of the two
controlled points are plotted in the second row.

a simple offline geometric model, which is an important
practical advantage. The limitations of the approach include:
it is restricted to 2D workspaces, it cannot handle non-
smooth unstable deformation behaviors, the type of objects



Fig. 10. Experiments 6 (top row) and 7 (bottom). Position control of three points. From the left in each row: initial shape, final shape, error of each point.

it can be applied on (fixed-length elastic DLOs) is limited,
and it assumes the grasping remains fixed all throughout the
control task. Overcoming some of these limitations is a clear
avenue for future work. Another relevant problem is how
to optimize the object’s deformation trajectory. We are also
interested in exploring the use of our formulation to find
suitable grasping points for a given shape control task.

TABLE I
STATE OF THE CONTROLLED POINTS IN THE PERFORMED EXPERIMENTS.

Experiment number Initial pose (m, m, rad) Target pose (m, m, rad)
1 [0.086, 0.650, 1.609] [0.296, 0.502, 1.915]
2 [−0.027, 0.266, 1.467] [−0.146, 0.198, 1.258]
3 [0.019, 0.678, 1.571] [−0.283, 0.551, 1.144]

Initial position (m, m) Target position (m, m)
4 [0.047, 0.601] [0.096, 0.505]

[0.072, 0.772] [0.226, 0.619]
5 [0.037, 0.564] [−0.345, 0.425]

[0.072, 0.735] [−0.273, 0.584]
[−0.065, 0.529] [0.040, 0.519]

6 [−0.044, 0.640] [0.101, 0.614]
[−0.012, 0.753] [0.177, 0.715]
[−0.044, 0.529] [−0.232, 0.470]

7 [−0.024, 0.659] [−0.234, 0.601]
[−0.006, 0.787] [−0.204, 0.719]
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